If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2+22w-21=0
a = 5; b = 22; c = -21;
Δ = b2-4ac
Δ = 222-4·5·(-21)
Δ = 904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{904}=\sqrt{4*226}=\sqrt{4}*\sqrt{226}=2\sqrt{226}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{226}}{2*5}=\frac{-22-2\sqrt{226}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{226}}{2*5}=\frac{-22+2\sqrt{226}}{10} $
| 4|6-2x|+8=24 | | -2x^2+20x=48 | | 3x-5(x-3)=-6+3x-19 | | 1/4+1/2+h=-3/4 | | 4(3+c)+3=c+4 | | 3(2p-4)=2p-4 | | y=13+7(-1) | | 5=9(10+6t) | | 9c+4-5c=2(c-3) | | -3=x/1 | | 2x+37=-10 | | 10=9(4+3b) | | 5/1+c=5/4 | | 0=-5x^2+10x+15 | | 2(7-4x)-(2x-3)=1-2(x+1) | | n+1.50+2=9.25 | | 8+4w=6(5-2w) | | 5a/8=3/2 | | y/6+5=-13 | | 15/50=9/x | | (5x+35)=75 | | 2-12-3x=10-x+4x | | 2/5r+6=-6 | | 7/8x+1/2=3/16x-4 | | 3x+1=5(x-2)+3 | | 3y+7-5y+6=2y+9 | | 0=10+6x-4.9x^2 | | ∠B=4x+38∘ | | 2x-2=+1 | | 5x-2+x=6(x+3)-4x | | 2/3x-5=3/4x-8 | | x={-15,-6,-1} |